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cost-benefit ratio in therapeutic drug monitoring (4). BayesianPharmacokinetic Variability and
(and non-Bayesian) estimation has been widely used to optimize

Therapeutic Drug Monitoring sampling times with the principal objective of improving the
estimation of pharmacokinetic parameters (5,6).Actions at Steady State

The model in this report examines the impact of random
variations or drift in the pharmacokinetics on therapeutic moni-
toring strategies. The equations are derived for steady state
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dosing, an assumption which is reasonable for many chronic
drug treatment regimens. The model yields analytical results
that allow the impact of dosing parameters to be assessed with-Received December 9, 1999; accepted January 27, 2000
out recourse to extensive simulation.

Purpose. To develop a mathematical model for therapeutic drug moni-
toring and to assess the kinetic relationships between the intensity of

DERIVATIONS AND RESULTScorrective action and the approach of drug concentrations to target
values.

The Stochastic Process for Steady State DosingMethods. A mathematical model that succinctly accounts for the cor-
rective actions and the variability inherent in the pharmacokinetics We assume that in the presence and the absence of thera-
was used. peutic drug monitoring, the concentrations can be described in
Results. The validity of the variability term was tested using experi- the form of an Ito process (7):
mental data for steady state concentrations of the drug procainamide.
The approach of the monitored process to the target value followed dx 5 a(x, t) dt 1 b(x, t)dz (1)
exponential kinetics and an analytical expression for dependence the

where a(x, t) is the drift rate or trend, b2(x, t) is the variancevariance with time and various dosing parameters was derived. The
rate, dt is differential time and dz is the differential of thevariance of the drug concentration depends critically on a single non-

dimensional parameter containing the rate constant for the therapeutic Wiener variable, z.
corrective actions and a coefficient describing the variance rate. When The functions a and b in Eq. (1) are generally, functions
the rate constant for the therapeutic corrective actions was less than of x and t. For example, for a drug with first-order pharmacoki-
this critical value, the variance increased indefinitely. netics, the concentration profile C(t) resulting from an elimina-
Conclusions. From a dosing standpoint, large variances in drug con- tion rate constant K yields an a(x, t) of :
centrations are undesirable because some patients will be overdosed
or underdosed. Since deterministic models cannot provide analytical a(x, t) 5 2KC (2)
solutions for the moments of drug concentration distribution functions,

In steady state dosing regimens, a(x, t) 5 0. If the square rootstochastic models can be used to provide useful insights into the design
of the variance rate function, b(x, t), of the drug is characterizedof therapeutic regimens.
by a constant coefficient of variation, s, then at steady state:KEY WORDS: modeling; stochastic; Log-normal; distributions;

pharmacodynamics. dC 5 sC dz (3)

Using Ito’s lemma, it can be shown that concentrations in suchINTRODUCTION
systems follow a log-normal distribution (3,8).

During steady state dosing, there is risk associated with
how an individual patient will respond to a treatment because Validating the Predictions of the Stochastic Model for
of pharmacokinetic and pharmacodynamic variabilities (1) that Steady State Dosing
are stochastic in nature and can result in either treatment failure

The validity of these predictions was challenged for steadydue to inadequate exposure, or toxicities due to excessive
state dosing using a clinically derived data set from Koch-exposure.
Weser (9) for dosing rates of 3 g/day or 2–2.25 g/day. FigureStochastic modeling approaches have the potential to pro-
1 is a probability plot that examines the hypothesis that thevide insights into a variety of pharmacokinetic and pharmacody-
logarithms of the concentration are normally distributed. Onnamic problems: The use of these approaches to examine the
such a plot, the points lie along a straight line when they arecontributions of pharmacokinetic variability to pharmacody-
log-normally distributed and Fig. 1 demonstrates that the log-namic variability and to assess the risks associated with unantici-
normal prediction is reasonable. This was confirmed using apated drug interactions has been demonstrated (2,3). The goal
one-sample Kolmogorov-Smirnov test to challenge the nullof this paper was to examine the implications of a stochastic
hypothesis that the logarithms of the concentrations were nor-model for therapeutic drug monitoring.
mally distributed. The statistical analysis did not reject the nullFor a drug with a given pharmacodynamic-pharmacoki-
hypotheses (P values greater than 0.95). These results supportnetic profile, the frequency of monitoring and the intensity of
the underlying model for variance rate in steady state dosingcorrective action are critical variables since they determine the
of procainamide.

The Stochastic Process Under Therapeutic Drug
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The variance Var(C.C0), of the concentration in the monitored
process is:

Var[C.C0] 5 e2(2a2s2)t FC2
0 1

2Csa(Cs 2 C0)
(a 2 s2)

2
2C2

sa

(2a 2 s2)G
2 [(C0 2 Cs)2 e22at] 2Fs2e2at2Cs(Cs 2 C0)

(a 2 s2) G
1 F C2

s s2

(2a 2 s2)G (8)

Dependence of the Mean and Variance of the
Concentration Distribution Function on
Monitoring Parameters

The expression for the mean, Eq. (6), is consistent with the
conventional pharmacokinetic intuition: i.e., for a deterministic
one-compartment model with zero order infusions, the equation
describing the kinetics of concentration changes has exactly
the same mathematical form. For a deterministic process, the

Fig. 1. The steady state concentration distribution of procainamide value of s 5 0 and the variance predicted by Eq. (8) is zero.
plotted against the cumulative percent probability. The data were

Thus, the stochastic differential approach yields the determinis-extracted from the report by J. Koch-Weser (9). The open circles
tic result as a special case.represent plasma concentrations at a daily dose of 2 to 2.25 g and the

The constant a in a monitored process is the proportionalityopen squares represent the plasma concentrations at daily dose of 3 g/
constant with which the caregiver converts deviations from theday. The solid line is the best fit line through the points.
target concentrations into changes in the infusion rate. The
results of Eq. (6) show that for a monitored therapeutic process,
the target concentration Cs is achieved over the time scale a21.
For example, a concentration halfway between C0 and Cs willachieve a target concentration Cs. To assess the impact of thera-
be achieved after a time interval equal to (ln 2/a).peutic drug monitoring, we assume that any deviations from a

These expressions for mean and variance also have theset or long term value of Cs are continuously corrected and the
following asymptotic properties:intensity of the correction is characterized by a term propor-

tional to the extent of the deviation from the target concentration. Limit
a→`

E[C.C0] 5 Cs (9)
The rate constant for the correction process is a constant a.
The stochastic differential equation that models actual changes Limit

a→`
Var[C.C0] 5 0 (10)

in drug concentration C is:

Limit
t→`

E[C.C0] 5 Cs (11)dC 5 a(Cs 2 C)dt 1 sCdz (4)

The term a is a rate constant that is related to the frequency
Limit

t→`
Var[C.C0] 5

C2
ss2

2a 2 s2 for a .
s2

2
(12a)or speed of corrective action and its reciprocal represents a

time scale over which the corrective measures take effect. As
previously discussed, the term sCdz models variability. This Limit

t→`
Var[C.C0] 5 ` for a #

s2

2
(12b)

equation is a general scalar linear stochastic equation, and the
conditional mean m(t) [ E[C.C0], at time t is the solution to

The first two asymptotic limits are consistent with ideal control:the ordinary differential equation (10):
i.e., if the drug monitoring process is extremely responsive and
frequent (a → `), then the target concentration Cs will bedm(t)

dt
1 am(t) 5 aCs (5) achieved and the variance will be zero.

In the limit of long time, t → `, the mean concentrations
Since the expected value of the concentration at time t 5 0 is reach the target concentration Cs. However, the variance of the
C0, the solution is (11): drug concentration depends critically on the magnitude of the

ratio 2a/s2. If this ratio is less than or equal to 1, the variance
m(t) 5 Cs(1 2 e2at) 1 C0e2at (6) at long times becomes indefinitely large, i.e., tends to infinity.

The variance is finite when the ratio exceeds 1.
The expectation E[C2.C0] [ P, is the solution to the ordinary

The existence of the critical monitoring frequency is a
differential equation (10,11):

unique and somewhat unexpected prediction of the stochastic
model that cannot be anticipated using deterministic models.dP(t)

dt
1 (s2 2 2a)P(t) 5 2aCsm(t) (7) However, in retrospect, this prediction is reasonable because

an unmonitored processes will drift and if the intensity of the
with initial condition P(0) 5 E[C2

0] 5 C2
0 corrective actions is not sufficient to overcome the effects of
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drift, then the variability in concentrations will be large. In Fig. After a is selected, the drug concentration measured during
2, we plot the variance of the concentrations versus time with therapeutic drug monitoring can readily be converted to changes
for varying values of s. The initial value of drug concentration in infusion rate.
C0 was set at 100, and the target concentration Cs was set at As in all mathematical models, certain simplifying
150 and an a value of 1 per unit time was used. At small values assumptions were necessary for the derivations. An important
of s, the variance of concentrations reaches a plateau but when idealization is that corrective actions are taken continuously.
the s value increases to point where 2a/s2 is less than 1, the Thus, the time scale predicted by Eq. (6) represents the lower
variance increases indefinitely. limit that is achievable using a proportional control strategy

with constant a values—in practice, because corrective actions
in the therapeutic settings cannot be taken continuously, theDISCUSSION
time required to achieve the target concentration will generally

In this report, a stochastic model was used for quantitating be greater. Clearly, this continuous stochastic model represents
the kinetics and variability with therapeutic drug monitoring. a simplistic but useful first step toward building discrete sto-
The model accounted for the variability inherent in the pharma- chastic models that reflect the clinical practice of therapeutic
cokinetics by allowing a geometric Brownian motion and the

drug monitoring with greater realism. Discrete stochastic mod-
impact of the corrective actions was modeled by using “propor-

els involve stochastic difference equations and in addition to
tional control” term. The validity of the variability term was

pharmacokinetic variability, they can be used to assess the
tested using experimental data from the seminal work on procai-

impact of factors such as measurement error and time lagnamide by Koch-Weser. The modeling framework is novel yet
between measurement and corrective action.simple and structured enough to provide analytical results for

In solving Eqs. (5) and (7), it was assumed that the initialthe moments of the drug concentration probability density
concentrations were monodisperse. However, the mathematicalfunction.
framework is flexible and allows this assumption to be relaxedA unique prediction of the stochastic model was that if
to accommodate distributions—the initial conditions for thethe value of a does not exceed a critical value, the variance
ordinary differential Eqs. (5) and (7) are merely replaced bywill increase indefinitely. From a dosing standpoint, such large
E[C0] and E[C2

0], respectively. For an initial concentration distri-variances are undesirable because some patients will be over-
bution that is log-normal with parameters (m0, s0), where m0dosed or underdosed. However, the value of a, the proportional-
and s0 are the mean and the standard deviation of lnC0, respec-ity constant by which deviations from the target concentrations
tively, the initial conditions are E[C0] 5 e(m010.5s20) andare converted to changes in infusion rate, is a factor that is
E[C2

0] 5 e2(m01s20). Thus, stochastic models are flexible and gen-directly under the caregiver’s control. The model can potentially
eral, and can provide information that is useful for the designbe used to select an a that keeps the variance at values that
of therapeutic regimens.reduce the likelihood of toxic concentrations or underdosing.

ACKNOWLEDGMENTS

Support from grants RG2739A1/1 from the National Mul-
tiple Sclerosis Society and 1R29GM54087-01 from the National
Institute of General Medical Sciences.

REFERENCES

1. G. Levy. Impact of pharmacodynamic variability on drug delivery.
Adv. Drug Deliv. Rev. 33:201–206 (1998).

2. M. Ramanathan. A method for estimating pharmacokinetic risks
of concentration-dependent drug interactions from preclinical
data. Drug Metab. Dispos. 27:1479–1487 (1999).

3. M. Ramanathan. An application of Ito’s lemma in population
pharmacokinetics and pharmacodynamics. Pharm. Res. 16:
584–6 (1999).

4. M. J. Burke and S. H. Preskorn. Therapeutic drug monitoring
of antidepressants: cost implications and relevance to clinical
practice. Clin. Pharmacokinet. 37:147–65 (1999).

5. Y. Merle and F. Mentre. Optimal sampling times for Bayesian
estimation of the pharmacokinetic parameters of nortriptyline
during therapeutic drug monitoring. J. Pharmacokinet. Biopharm.Fig. 2. The variance of the concentration as a function of time for the
27:85–101 (1999).different values of s indicated next to the curve for a monitored process.

6. L. Yuh, S. Beal, M. Davidian, F. Harrison, A. Hester, K. Kowalski,
For the simulations, the value of a was equal to 1, in units of reciprocal E. Vonesh, and R. Wolfinger. Population pharmacokinetic/phar-
time; the initial concentration, C0, was 100 units, and the target concen- macodynamic methodology and applications: a bibliography. Bio-
tration, Cs, was 150 units. The dashed line corresponds to s 5 1.5 metrics. 50:566–75 (1994).
which generates a 2a/s2 value that is less than 1 and causes the variance 7. K. Ito. On stochastic differential equations. Memoirs, American

Mathematical Society. 4:1–51 (1951).to increase indefinitely at large values of time.



592 Ramanathan

10. L. Arnold. Stochastic differential equations: Theory and applica-8. L. U. Dothan. On the term structure of interest rates. J. Finan.
Econ. 6:59–69 (1978). tions, John Wiley and Sons, New York, 1974.

11. G. Courtadon. The pricing of options on default-free bonds. J.9. J. Koch-Weser. Serum procainamide levels as therapeutic guides.
Clin. Pharmacokin. 2:389–402 (1977). Finan. Quant. Anal. 17:75–100 (1982).


